129,552 research outputs found

    On the approximation of turbulent fluid flows by the Navier-Stokes-α\alpha equations on bounded domains

    Full text link
    The Navier-Stokes-α\alpha equations belong to the family of LES (Large Eddy Simulation) models whose fundamental idea is to capture the influence of the small scales on the large ones without computing all the whole range present in the flow. The constant α\alpha is a regime flow parameter that has the dimension of the smallest scale being resolvable by the model. Hence, when α=0\alpha=0, one recovers the classical Navier-Stokes equations for a flow of viscous, incompressible, Newtonian fluids. Furthermore, the Navier-Stokes-α\alpha equations can also be interpreted as a regularization of the Navier-Stokes equations, where α\alpha stands for the regularization parameter. In this paper we first present the Navier-Stokes-α\alpha equations on bounded domains with no-slip boundary conditions by means of the Leray regularization using the Helmholtz operator. Then we study the problem of relating the behavior of the Galerkin approximations for the Navier-Stokes-α\alpha equations to that of the solutions of the Navier-Stokes equations on bounded domains with no-slip boundary conditions. The Galerkin method is undertaken by using the eigenfunctions associated with the Stokes operator. We will derive local- and global-in-time error estimates measured in terms of the regime parameter α\alpha and the eigenvalues. In particular, in order to obtain global-in-time error estimates, we will work with the concept of stability for solutions of the Navier-Stokes equations in terms of the L2L^2 norm

    Almost Periodic Solutions and Global Attractors of Non-autonomous Navier-Stokes Equations

    Full text link
    The article is devoted to the study of non-autonomous Navier-Stokes equations. First, the authors have proved that such systems admit compact global attractors. This problem is formulated and solved in the terms of general non-autonomous dynamical systems. Second, they have obtained conditions of convergence of non-autonomous Navier-Stokes equations. Third, a criterion for the existence of almost periodic (quasi periodic,almost automorphic, recurrent, pseudo recurrent) solutions of non-autonomous Navier-Stokes equations is given. Finally, the authors have derived a global averaging principle for non-autonomous Navier-Stokes equations.Comment: J. Dynamics and Diff. Eqns., in press, 200

    A Liouville theorem for the planer Navier-Stokes equations with the no-slip boundary condition and its application to a geometric regularity criterion

    Get PDF
    We establish a Liouville type result for a backward global solution to the Navier-Stokes equations in the half plane with the no-slip boundary condition. No assumptions on spatial decay for the vorticity nor the velocity field are imposed. We study the vorticity equations instead of the original Navier-Stokes equations. As an application, we extend the geometric regularity criterion for the Navier-Stokes equations in the three-dimensional half space under the no-slip boundary condition
    corecore